Further PCB improvements

I’m glad to report I’m getting even better result with my PCB etching. Results do seem a bit up and down each time I get back to it but I feel I’m narrowing it down and getting more polished.

One. I’ve started using Ziplock vacuum bags to evenly press the transparency against the PCB. A really nice cheap substitute for a vacuum light box! I can thoroughly recommend them.

Etching underway

Etching underway

Two. I’m now able to get even better exposure with 3.5 minutes under the UV box rather than using the fluorescent tube. Maybe my developer solution used to be too strong. Maybe ditching the glass in favour of the Ziplock helped. Regardless, I’m getting a really good result. Here’s the partially etched board showing great definition.

Three. I got some Tin plating solution. No idea why I didn’t do this before, as it’s really easy and gives a great finish. The instruction say to carefully clean the copper with an abrasive. However, I assumed that as I’d just removed the etch resist from the copper with acetone and it had to be just about as clean as it could be. I popped it straight in the tinning solution before I got fingerprints all over it.

Etched and soldermasked board

Etched and soldermasked board

Milled, drilled and populated

Milled, drilled and populated

I had to mess something up and I removed the protective layer on the soldermask before exposing. Some of it dulled a little on contact with the transparency. Oh well. Otherwise I’m very happy. The ridiculously small negative text even came out a little. Here’s the board before drilling and populating. It a simple MSP430 based alarm for when my two year old son opens the front door. He can now just reach the handle.

When I’ve got it all sorted (and have tried the via rivets too) I think I might do a proper write-up.

Advertisements

CNC mill alignment camera (version 1.0)

Since switching from milling PCBs to etching them, one of the most awkward steps is getting accurate alignment for drilling and cutting out the boards. Mounting a camera on the spindle isn’t an original idea, but after sporting some tiny endoscope cameras on eBay (10mm dia, 40mm long) I thought I’d give it a go. A good excuse to use the new lathe too.

image

The design is pretty simple. I drilled out some  aluminium bar stock to 12mm, with one end slightly narrower and tapped to M12. Then I turned down a M12 bolt to for in the 3mm collet I use with my end mills. A slot at the top is for the USB cable and two sets of three nylon screws allow for accurate alignment.

image

As you can see, a Mach3 video plug in makes it very easy to set the origin on a PCB or other work. Unfortunately it’s a bit long so there’s only just enough room to use with flat stock. I considered mounting it to the side of the spindle (with a known offset) but that didn’t seem right. A more compact version 2.0 is already planned using just the guts of the camera.